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NONLINEAR ROBUST CONTROL AND ESTIMATION
Final Report for AFOSR Grant F49620-98-1-0304

William M. McEneaney
Department of Mathematics
North Carolina State University

1 Main Concepts:

The overall goal has been that of computationally feasible methods for nonlinear Ro-
bust and H,, control and filtering, with the recent addition of risk-sensitive control
and filtering (due to a new result suggesting reduced computations). The meth-
ods are based on max-plus, min-plus and log—plus algebraic approaches to ezact
linearization of the associated semi-groups. Other tangential efforts have included
making use of existing dimensional reductions in certain problems, and a new effort
in applications to command and control for air operations.

2  Overview of Results:

1) We have begun development of max-plus methods in the solution of nonlinear
H,, Bellman equations corresponding to problems with fixed—feedback. More
specifically, we have developed error estimates and convergence results for the
algorithm. Software is under development.

2) We have also addressed the nonlinear Hy, control problem with active control
computation in the case where the controller can dominate the disturbance.
This leads to a semi-group which is exactly linear over the min-plus algebra.
Software is under development.

3) The linearity of certain nonlinear risk-sensitive stochastic control and filter-
ing problems under the appropriate log-plus algebra has been studied, and
some initial steps indicating the nature of algorithms designed to exploit this
linearity have been taken.

4) The PI (with collaborators K. Ito, Q. Zhang, and W.H. Fleming) have begun
to apply methods of robust control and filtering to the C? problem for air

operations.

5) Joint work with J.W. Helton and M.R. James on dimensional reduction for
nonlinear Hy, control under partial information in the case where there are
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some very-low-noise measurements has been started. The reduction of di-
mension (of the space on which the information state must be propagated)
under exact measurements has been demonstrated, and a simple means of
compensating for the small noise in those measurements is being considered.

6) Another, very interesting, development is that nonlinear risk-sensitive control
and nonlinear H, control all take exactly the form of standard stochastic con-
trol (i.e. minimization of the expectation of an integral cost) under changes
of algebra and probability measure. This work is in a nascent state.

7) Joint work with M.R. James on application of max-plus methods to nonlin-
ear Hy, control under partial information is underway. Software has been
developed by E. Gallestey (a post-doc) at Australian National University.

8) Joint work with W.H. Fleming proving convergence of the risk-sensitive filter
to the H, filter (McEneaney definition) has reached a mature stage. This not
only proves a filtering result analogous to the now well-known control result,
but also lends additional support to the use of the computationally preferable
H, filter definition of McEneaney (in contrast to definitions used by some
other researchers which are actually more directly analogous to smoothers in
stochastic approaches).

3 Detailed Discussions

3.1 Numerics — Overview of Max—Plus Methods

We focused on the nonlinear Ho, control problem during the grant period. Consider
the case where one has chosen a particular feedback form. Then the associated
semi-group is linear over the max—plus algebra. This led to a representation of
the value function (available storage) as a max-plus eigenvector of the semi-group
corresponding to eigenvalue zero (the max—plus multiplicative identity), that is
0® W = S,[W] where W is the value, S; is the semi-group, and ® represents
max-plus multiplication. By approximating W with a finite number of functions
from a max-plus basis expansion, the problem is reduced to computation of a finite-
dimensional max-plus eigenvector, e, satisfying 0 ® e = B ® e for a particular B.

More recently, we began developing an error analysis which demonstrates that the
errors converge to zero as the number of vectors used in the basis expansion increases.
It is known that there is a unique max-plus eigenvalue for the class of matrices to
which B belongs. We have now demonstrated that (in this class of matrices), there
is also a unique eigenvector corresponding to this unique eigenvalue. We use the
power method to compute this eigenvector, and guarantee exact convergence in a



finite number of steps. This quality of a unique eigenvector removes some previous
questions as to whether the method would converge to the correct solution.

More specifically, we consider the Hy, problem for a nonlinear system. Nonlin-
ear H,, control and its relation to the associated dynamic programming equation
(DPE) has been studied extensively (see [1], [11], [42], [3] among many notable
others). For continuous systems, this DPE takes the form of a partial differential
equation (PDE). Unfortunately, the Hy, DPE is nonlinear — possessing a term which
is quadratic in the gradient. A significant recent development has been the discovery
of new numerical methods exploiting the max—plus (to be defined below) linearity
of the associated solution operator [18], [19], [17], [8]. These algorithms employ a
max-plus basis expansion for the space of semi-convex functions. The max—plus lin-
earity was also noticed earlier in [12]. In this approach, the solution of the He PDE
is given by a max—plus eigenvector corresponding to a max—plus eigenvalue of 0 (the
max—plus multiplicative identity) for a particular matrix. This matrix is associated
with the solution operator of the PDE. Note that the nonlinear H,, problem is trans-
formed into a maz-plus eigenvector computation although one must still compute
(or approximate) the matrix defining this problem. This algorithm is analogous to
a spectral method for a linear problem (but in the max—plus sense) as opposed to
finite difference methods. We remind the reader that the max-plus algebra is a
commutative semi-field on £ U { oo} given by

adb= maxf

1
a®@b=a+b (1)

Note that —oo is the additive identity, and 0 is the multiplicative identity. This
can be extended to a field [2], but we do not need that here.

3.2 Details — Solution operator and max—plus linearity

Consider the system
X=fX)+o(X)w, X(0)==z (2)

where X is the state taking values in R", f represents the nominal dynamics, the
disturbance w lies in W = {w : [0,00) = R™ : w € Ly[0,T] VT < oo}, and o is an
n X m matrix-valued multiplier on the disturbance.

We will make the following assumptions. These assumptions are probably not
necessary but are sufficient for the results to follow. We will assume that all the
functions f, o and [ (given below) are smooth. We will assume that there exist
K, c € (0,00) such that

If(z) - fWI < Klz—y| Vz,yeR”

(z—y)7(f@) - fy) < —cz—y* Vz,yeR (A1)
f(0)=0



Note that the second inequality automatically implies the closed-loop stability cri-
terion of Hy control. (The second inequality would not be needed in the active
control case to follow.) We assume that

lo(z) —o(y)| < K|z —y| Vz,yeR" ,
o) <M Vo€ ’ (42)

for some M < oco. Let I(z) be the running cost. We assume that there exist 8, & < co

such that
0<l(z) <alz? VzeR

(There is a reason for allowing (3 to be greater than 2c, which one might notice
below.)

The system is said to satisfy an H, attenuation bound (of v) if there exists
v < oo and a locally bounded available storage function W(z), such that

T 2
W(z) = sup sup | U(X(t)— L|w(t)?dt. (3)
weW T<co /0 2
The corresponding DPE is
0= LYW o(2)oT(@)VW + fT(@)VW + l(z). (4)

. 272

Tt will be assumed throughout that we are looking for a solution satisfying W (0) = 0.
We will also suppose that the above constants satisfy

2
¥ «a
oYE > =2 (5)

We note that there are linear examples where (5) exactly determines the minimum
disturbance attenuation parameter. One has the following result ([26],(30]). The
proof can be found in the references.

Rather than dwelling on the PDE representation (4), we would like to show that
W is a fixed point of the solution operator to the DPE, where this solution operator
has the representation

SWONE) = sup { [ UK T (o) a
+W (X (7))}

By a modification of the proof of the previous theorem, one can show the following.
The proof can be found in [19)].



Theorem 3.1 For any 7 € [0,00), W given by (3) satisfies S.[W] = W, and
further, it is the unique solution in the class

0< W) < c(—'lz%)zw (6)

for some & > 0, and this is the “correct” solution given by (3).

Note that W is a fixed point of S, for any 7, which provides some freedom in
the choice of problem we wish to solve. This will be discussed further below. The
proof of the max~plus linearity of S; is trivial (see [19]).

Theorem 3.2 The solution operator, Sy, is linear in the maz—plus algebra. That
is, (for constant ¢ and functions ¢,)

S:[¢ ® ¢](z) = S;[¢](z) ® S:[¢](x)
S;[c® ¢)(z) =c® S:[8](z)

3.3 Details — Max—plus basis and the eigenvector equation

Define the space of semi—convex functions, S, as the set of ¢ : " — R such
that for any R < oo there exists cg < oo such that ¢(z) + %£|z|* is convex over
Br = {z € ®* : |z| < R} (see [18]). We refer to such a cg as a semi-convexity
constant for 1. The proof of the following is rather technical.

Theorem 3.3 W liesin S.

The following max-plus basis can be derived from convex duality; see [18] for
details. Let ¢ € S. Fix R < co. Then ¢ is Lipschitz continuous with some constant
Lg over Br(0) (cf.[6]). Let {z;} be a countable, dense set over Br,/(acz)(0), and let
C > cgl (see [18] for definition) be a positive definite matrix. Define

ila) = — (o - 2)7C(o — )

for each ¢. Then,

¢(z) = Pla; ® ¢i(z)]  Vz € Br (7)

i=1
where a; = — maxX,ep, [thi(z) — ¢(z)]. This is a max—plus basis expansion.

We assume C can be chosen so that S;(¢;(z)) has an expansion



Sr(¥i(z)) = éB i ®Y; (Ad)

where
Bj; = — max(y;(z) — 5-(¢i(2)))

for each i (we discuss this a little more in the next section). (This is equivalent to
an assumption that S, (i;(x)) is semi-convex with some constant ¢ on Br where
C > cjI. In the case where oo” is uniformly nondegenerate, the existence of ¢z can
be proven, but we do not include that here.) Note that B actually depends on 7, but
for this section we fix any value 7, and suppress the dependence in the notation. In
order to reduce complexity, we suppose throughout the next two sections that W has
a max—plus basis expansion with a finite number of terms. Let W(z) = @i, a; ® ¢
and aT = (a; ay - -+ a,). Also assume that the expansions of the S;(¢;(x)) terminate
at n terms. The full error analysis (where we show that the errors introduced by
truncation go to 0 as n — oo) will be delayed to a later paper. Lastly, let us assume
that it is required that

aj >—-o00 Vji<mn, (AD)

that is, each basis function must be active. The key result is Theorem 3.4. The
proof appears in [17].

Theorem 3.4 S, [W] =W if and only if a = B®a where B®a represents maz-plus
matriz multiplication.

The proof appears. in [13].

3.4 Details — Convergence of the eigenvector computations

Recall that we need to solve the eigenvector problem
lQe=BQ®e, or, e=BQe (8)

This requires two steps: computing (approximately) B, and then solving (8) given
this B. In this section, we address the second step; in the next section, we will

address the first step.

We will use the power method to compute the eigenvector. That is, we will
demonstrate that
e= lim B"®0
m—>00
where 0 represents the zero vector, and the B™ represents the max—plus product
repeated m times.



For the remainder of the section, fix any 7 € (0,00). Define
2

H(z,y) = & W](@) — sup [ 1X(®) - Flw(®)P dt

+W (X (1))} 9)

where X (0) = 0 and W, = {w € W: X(r) = y}. We note the following, but do not
include the straightforward proof (although the machinery is in [30})

H(-,-) is continuous, (10)
H(0,0)=0 and H(z,z)>0ifz #0. (11)
Lemma 3.5 Let w € W.
[ 1xX(@0) - Tl de < WE@W(X()
—H(z, X(r))
where X (0) = .

The proof appears in [13].
Now let the {z;} be such that z; = 0.

Lemma 3.6 B;; = 0. Also, there exists § > 0 such that for all j # 1, Bj; < —4.

The proof appears in [13].

Theorem 3.7 Let N € N, {k,-}ﬁi{v“ such that 1 < k; < n for all © and kny1 = k1.
Suppose we are not in the case N =1, ki =ko=1. Then

N
ZBki,ki+1 < —0.
i=1

The proof appears in [13].

We should note that B has a unique eigenvalue, although possibly many eigen-
vectors corresponding to that eigenvalue [2]. By the above results, this eigenvalue
must be zero (ignoring errors due to approximation).

Theorem 3.8 limy_,o, BY ® 0 ezists, converges in a finite number of steps, and
satisfies e = BQee.

The proof appears in [13].

Not only is the eigenvalue unique, but we can also show that

. Corollary 3.9 There is a unique eigenvector up to a maz-plus multiplicative con-
stant, and of course, this is the output of the above power method.

The proof appears in [13].



3.5 Details — Approximation of B

The feasibility of the algorithm is dependent upon a feasibile approximation algo-
rithm for B. One approach is a Taylor series (in t) approximation to Sy[;](z). More
specifically, letting V (¢, z) = Si[¢s](z), so that V satisfies
Vi=f -VV+1+VVToo"VV (12)
V(0,9) = :(a)

one may approximate V as
1
V(t,z) = Vo(z) + Vi(z)t + 5‘/2(.’E)t2 + ... (13)

Here Vy(z) = v;(z) and V; is the right hand side of (12) with ¢; replacing V. The
higher order terms are computed by differentiating (12), and we do not include them.
Then ’

B;j; = —mgx{i/}j(w) - [Vo+VWiT+ ';-‘/27'2 +.. .](a:)} .

This method was applied but suffers from a problem which we describe only
briefly. Note that the approximation of V' via, say three terms, in the Taylor series
at z out to time 7 can be improved by reducing 7. However, the argmax moves off
toward “co” as 7 J 0, and the Taylor series approximation degrades as  moves off
to oo! Consequently, the approximation of B;; does not tend to improve as 7 | 0,
and so this approach was abandoned.

In its stead we are using a means of approximately tracking the argmax for small
time intervals. Let

B(t.x) = 50— E0)C - €0)

where

§(t) = zi + (t/7)(2; — 24)-
Let V (t,z) be as above (with 1; as initial condition). Let
X () = argmax {9;(t,z) — V(t,7)} .

Note that
X (1) = argmax {¢;(z) — V(r,z)}

which is the desired quantity. The replacement of ;(-) by %;(t,-) prevents the
argmax from “blowing up” at ¢ | 0. We use the Taylor expansions

V(t,z) % (t) + Va(t)(z — X(8))
+-;-(x X)) TVa(t)(z — X (@) + - ..
Fi(@) Fro + frai(lz =X (@) + ...



(where the k subscripts in the f expansion indicate components). One then obtains
the following sequence of ordlnary differential equations for the propagation of X
leading to a computation of Bj;

Xk-— 2 { ZCkzﬂﬁzz ;)
_[Z fll k‘/1$1+f10‘/2$k,m1)
1

—2 Z(‘flmlal,mvézl,zk) + 2-X—k]}

im
Vb = Z[Ejzk (fro + Xy — Z(ak,lajz,))] + IYP
% !

plus higher order equations which we do not include here. It will be shown that the
error induced by cutting off this series at a finite number of differential equations
can be bounded for small time. We also note that the initial conditions for this
propagation are easily obtained, although we do not include them here.

Two examples appear in figures 1 and 2. In the first, a linear-quadratic example
is considered. Both the exact solution, and the numerically computed solution are
displayed. In figure 2, the solution of a nonlinear problem is displayed. Although
there is a significant nonlinearity, the solution is still rather well-behaved; less well-
behaved examples will need to be generated. Each computation took less than 10
seconds on a Unix Ultra 10 workstation.

There still remain some significant questions, such as how to reasonably choose
the basis functions and time-step.

Further information can be found in [13], [17], [19] and [18].

3.6 Numerics — Min—Plus Methods

Min-plus methods are being used for the solution of nonlinear Hy, control problems
where there is active control computation (as opposed to testing of feedbacks above).
For instance, consider the problem with dynamics X = A(X) + B(X)u + o(X)w
and cost

7= [T LX) + T - o) d
where u is the control, w is the disturbance and X is the state. The corresponding
Isaacs equation takes the form
B(z)BT(z) o(z)oT(2)
2772 2,),2
If u dominates w in the sense that the Hamiltonian is concave, then the associated

semi-group is linear over the min-plus algebra. All the results of item 1 have
analogues in this case. Software for two-dimensional problems is being debugged.

VW.

0= A(z) - VW + L(z) - vwT [



Further information can be found in [13] and [17].

3.7 Min—Plus Example

As an example, we consider the min—plus problem in two-dimensions with X (t) =
(z1(t), zo(t))T and dynamics

(2) - ((3/4) ari‘ian(?a:ﬂ) + ((1)) ut (2) - (14)

Let ~v,7 be such that the reduction of the previous section yields

Q_é@: {8 192]‘

Note that this example was chose so as to represent a second-order system of the

form
i = (3/4) arctan(2y) + u + w.

The running cost was simply [(X) = 22 + z3.

The computations were run to obtain the results depicted in the figures below.
The computations were run at a coarseness level that allowed computation in less
than 10 seconds on a Sun Ultra 10. Figure 1 depicts W. Figures 2 and 3 depict the
partials of W; note the non-smoothness. Figure 4 depicts the approximate error
computed by taking first-order differences (probably too coarse a method) on the
grid to approximate VW, and then plugging this back into the PDE. The resulting
values were scaled by dividing by 1 + |z|*.

s 2 Mm@ e o @
¥ % i

Figure 1: Storage function
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3.8 Numerics — Log—Plus Methods

Nonlinear risk—sensitive problems such as risk-sensitive filtering exhibit the same
type of behavior as described in the first item in the case of Hy, problems. Specif-
ically, there exist a set of algebras (actually fields in this case) indexed by a pa-
rameter ¢, such that the risk-sensitive problems have semi—-groups which are linear.
The question of how to choose an appropriate basis to exploit this linearity remains

open.

Further documentation can be found in [16].




Figure 4: Scaled back-substitution error
3.9  Theory/Numerics — Dimensional Reduction

Since filtering and control under partial observations can quickly become compu-
tationally unwieldy as the dimension increases, we consider the case where the
measurements are such that one might know some components of the state al-
most exactly. This has been termed the “cheap sensor” case. We showed that if
m state-components were measured exactly in a problem with n state-components,
the computation of the information state could be reduced to propagation on an
affine n —m dimensional space, with this affine space moving according to the exact
measurements. This was been documented in a CDC paper, and a journal paper
has been submitted to IEEE TAC. However, one needs to ensure that the method
is robust to small errors in the nearly exact measurements. We are now beginning
a study of this problem. We will show that a “steep” quadratic in the m state
components will be the next step in an expansion around the exact measurement
situation. (Joint work with J.W. Helton.)

Further documentation can be found in [10] and [20).

3.10  Theory — Risk—Sensitive Filtering

It has been demonstrated that a risk-sensitive filter converges to a Robust/H, filter
(McEneaney definition). This result is directly analogous to similar results which
we have obtained in recent years for the control problem. This also adds further
weight to the appropriateness of the (McEneaney definition of the) H, filter for
tracking applications (as opposed to more computationally difficult definitions be-
ing employed for partially observed control which are actually more properly termed




smoothers) (Joint work with W.H. Fleming.)

Further documentation can be found in [7] and [24].

3.11 Theory/Numerics — Partially Observed H,, Control

In joint work with M.R. James, we have developed an approach to He, control under
partial information where the information state is propagated via max-plus meth-
ods. Software has been developed at Australia National University with the aid of
a post—doc.

Further documentation can be found in [15].

3.12 Theory — General

We showed that nonlinear risk-sensitive problems and H,, problems take exactly the
same form as traditional stochastic problems — once one transforms the underlying
algebra. That is, in traditional stochastic control problems, one attempts to min-
imize an expectation of some integral cost criterion such as E{fy L(X(t))dt}. A
corresponding risk—sensitive criterion would take the form

¢ log [E {exp (é /0 T Lx @) dt) H , 2)

while an H,, criterion would take the form

T

sup [ [L(X(1) = w(t)[] dt. (3)

welL2 /0
Now, employ the appropriate log—plus algebra for criterion (2), and the max-plus
algebra for criterion (3). Next, adjust the definition of a probability measure to
coincide with the algebra. For instance, the probability measure, P’, must satisfy
I, < P'(A) < I, for any measurable A where I, and I, are the additive and
multiplicative identities. (In the standard algebra, this is simply 0 < P(A) < 1.)
Then criteria (2), (3) take the (traditional stochastic) form

E {/OT L(X(2)) dt} :

where the ¢ superscript indicates a probability measure corresponding to the appro-
priate log-plus or max-plus algebra. As e | 0, the log-plus algebras converge to
the max-plus algebra, and the log—plus probability measures converge to the max-
plus measure. Consequently, one can also interpret the convergence of risk—sensitive
control to Hy, control in terms of convergence of the algebras and corresponding
probability measures. This is a major re-interpretation. This work is in its infancy.

Further documentation can be found in [16].
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